首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1105篇
  免费   64篇
  国内免费   9篇
林业   68篇
农学   75篇
基础科学   27篇
  419篇
综合类   103篇
农作物   98篇
水产渔业   64篇
畜牧兽医   191篇
园艺   29篇
植物保护   104篇
  2023年   17篇
  2022年   45篇
  2021年   72篇
  2020年   72篇
  2019年   92篇
  2018年   115篇
  2017年   107篇
  2016年   78篇
  2015年   38篇
  2014年   47篇
  2013年   136篇
  2012年   58篇
  2011年   71篇
  2010年   40篇
  2009年   27篇
  2008年   39篇
  2007年   26篇
  2006年   25篇
  2005年   11篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1178条查询结果,搜索用时 797 毫秒
51.
The impact of soil (1, 2 kg ha?1) and foliar (100, 200 mg L?1) boron (B) with control (no B) was evaluated on phenology and yield formation of Camelina each applied at stem elongation and flowering stages. Foliar (200 mg L?1) or soil B (2 kg ha?1) resulted in earlier flowering and maturity, increased fruit bearing branches (19.68%), number of siliqua, seeds per siliqua (4.6%), biological yield (15%), seed yield (24%), harvest index (11.4%) and oil contents (23%) than no B. Increased fruit bearing branches, seed filled siliqua or seed numbers, harvest index and oil quality can be attributed to changes in dry matter accumulated of stem with simultaneous increase in siliqua dry weight with foliar or soil applied B. In crux, foliar (200 mg L?1) or soil applied (2 kg ha?1) B seems promising to improve seed and oil yield, harvest index of Camelina sativa under B deficient condition.  相似文献   
52.
The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.  相似文献   
53.
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a widely distributed and destructive agricultural pest on various host plants. The biology of two biotypes of B. tabaci: the invasive B and a new defined Cv biotype, on a range of host plants (hibiscus, laurel, poinsettia, collard, cucumber and tomato) were studied in the laboratory. Results revealed that the developmental periods of the B biotype immatures were not significantly different on the tested host plants except those between laurel and collard. The Cv biotype immatures developed significantly slower on cucumber and tomato than on the other plants. B. tabaci B biotype had the highest survivorship on collard (68.55%), and the lowest on laurel (33.24%), while the Cv biotype had the highest and lowest survivorships on laurel (61.63%) and tomato (36.74%). Host plants did not significantly affect the pre-ovipostion period regardless of biotype. The longest averaged longevity and highest fecundity of B biotype were both recorded on collard: 25.15 days and 143.0 eggs. The highest fecundity of Cv biotype was 196.49 eggs on laurel and its longest longevity was on hibiscus (19.62 days). The intrinsic rate of natural increase (r m) of B biotype on the three vegetables were all higher than those on the three ornamentals whereas the r m of Cv biotype on the three ornamentals were all higher that those on the three vegetables. Our research indicates that B. tabaci B and Cv biotypes have different host plant suitabilities. The three tested vegetables were more suitable for B biotype while the three tested ornamental plants were more suitable for Cv biotype. The potential mechanism for the different suitability of B and Cv biotypes on various host plants is also discussed.  相似文献   
54.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is an important insect pest of canola, Brassica napus L., in Ardabil, Iran. Host plant resistance is an essential component of integrated management of P. xylostella. We investigated the preferences and performance of P. xylostella on nine commercial cultivars of canola, namely Zarfam, RGS003, Adder, Okapi, Opera, Hyola401, Ebonite Option500 and Elite under greenhouse conditions at 23 ± 1°C, 50 ± 5% RH and 14L:10D. In free-choice situation, oviposition was lowest on Opera (23.5) and highest on Zarfam (44.7). In the life table study, fecundity of new generation female moths was lowest on Opera (95.4) and highest on Adder (145.7). Survival from egg to adult was significantly lower on Opera, Option500 and Hyola401 than on other tested cultivars. The intrinsic rate of natural increase (r m) and population growth rate (λ) were lowest on Opera and highest on Zarfam. The generation time (T) was shortest on Zarfam (17.2 days) and longest on Hyola401 (19.9 days) whereas doubling time (DT) was longest on Opera (3.9 days) and shortest on Zarfam (3.0 days). Our results clearly suggest that Opera was the most resistant host among the tested cultivars and has the potential to be used in the integrated management of P. xylostella.  相似文献   
55.
当前,基于正积温的度日模型广泛应用于冰川消融研究中,该模型的核心参数是度日因子。根据印度河上游Sachen、Gharko、Barpu冰川2014—2016年的物质平衡和气温实测资料,计算得到消融期内各冰川研究区的度日因子,并分析了度日因子的时空变化特征及影响因素。研究结果显示:Sachen、Gharko、Barpu冰川度日因子均值分别为2.83 mm?d-1?℃-1、3.74 mm?d-1?℃-1、3.91 mm?d-1?℃-1;各冰川度日因子皆随着海拔升高而递增,海拔递增率分别为0.003 7 mm?d-1?℃-1?m-1、0.007 4 mm?d-1?℃-1?m-1、0.004 1 mm?d-1?℃-1?m-1;对于同一观测点而言,度日因子不是一个常数,会随着时间的变化而改变,冰川度日因子随着年际变化呈增加的趋势;度日因子受表碛影响显著,度日因子整体上随着表碛厚度的增加而递减。然而表碛厚度低于2 cm时,表碛的覆盖作用促进了冰川的消融,表碛覆盖区冰川度日因子大于裸露区冰川;冰川朝向的变化对度日因子产生了一定的影响,面向阳坡的冰川度日因子随海拔递增率大于阴坡。  相似文献   
56.
Fifty wheat varieties along with Jupateco-73 and Morocco were studied for the expression of leaf tip necrosis (LTN), a trait linked with the durable rust resistance gene pair Lr34/Yr18. LTN was frequent (i.e., ≥6) in nine replications of a field experiment over 3 years in 17 genotypes, and the varieties were considered positive for LTN. In molecular analyses of these varieties, having relative severity values up to 78 for yellow rust and 45 for leaf rust, the 150-bp Lr34/Yr18-linked allele was consistently amplified. Expression of LTN in six of nine replications is an appropriate threshold for predicting the presence of Lr34/Yr18 gene pair, and genotypes can be selected using this trait.  相似文献   
57.
BACKGROUND: Rhizobacteria have a good potential to suppress soilborne diseases, but their efficacy against sugarcane pests is rarely reported. Bacterial strains isolated from the rhizosphere of sugarcane were evaluated for their potential to suppress red rot disease on two susceptible varieties, Co‐1148 and SPF‐234, under field conditions. The strains were also characterised for the production of secondary metabolites associated with their antagonistic activity. RESULTS: One out of four strains, the Pseudomonas putida strain NH‐50 (EU627168), reduced disease severity by 44–60% in different field trials. This potent antagonistic strain produced pyoluteorin antibiotic, as confirmed by high‐performance liquid chromatography (HPLC). The PltB gene involved in pyoluteorin synthesis was amplified from the P. putida strain NH‐50 and sequenced. The extracellular metabolites and volatile and diffusible antibiotics secreted by the tested strains inhibited mycelial growth of Glomerella tucumensis (Speg.) Arx & E Mull in vitro by 7–55%. CONCLUSION: The pyoluteorin‐producing bacteria P. putida strain NH‐50 significantly reduced disease severity on both sugarcane varieties, irrespective of fungal inoculation, i.e. either inoculated through stem or through soil. This strain also possesses other plant growth characteristics and can be used as a biopesticide for sugarcane crop. Copyright © 2011 Society of Chemical Industry  相似文献   
58.
Maize straw and pea straw were added to five Pakistani soils from a gradient in salinity to test the following hypotheses: Increasing salinity at high pH decreases proportionally (1) the decomposition of added straw and (2) the resulting net increase in microbial biomass. In the non-amended control soils, salinity had depressive effects on microbial biomass C, biomass N, but not on biomass P and ergosterol. The ratios microbial biomass C-to-N and biomass C-to-P decreased consistently with increasing salinity. In contrast, the ergosterol-to-microbial biomass C ratio was constant in the four soils at pH>8.9, but nearly doubled in the most saline, but least alkaline, soil (pH 8.2). The addition of the maize and pea straw always increased the contents of microbial biomass C, biomass N, biomass P and ergosterol, but without clear effects of salinity. Highest mean contents of microbial biomass C and biomass N were measured at day 0, immediately after the straw was added. Straw amendments increased the CO2 evolution rates of all five soils without any effect of salinity. The same was true for total C and total N in the two fractions of particulate organic matter (POM) 63–400 μm and >400 μm. Lowest percentage of straw-derived CO2-C and highest recoveries of POM-C and POM-N were observed in the maize straw treatment and the reverse in the pea straw treatment. Yield coefficients were calculated for maize and pea straw based on the assumption that the balance gap between CO2 and the amount of POM can be fully assigned to microbial products.  相似文献   
59.
In this study, long-term effects of salinity and high boron (B) on subcellular distribution of sugars in wheat leaves were investigated. Four treatments with three replications of each; control, high B, sodium chloride (NaCl) and NaCl + high B, respectively were established according to completely randomized design. Plants were grown hydroponically and harvested after 6 weeks onset of experiment. NaCl treatment markedly decreased the shoot fresh and dry weight compared to high B or NaCl + high Boron. It increased the sugar concentrations in subcellular compartments, whereas decreased in NaCl + high B. Contrary, NaCl either alone or in combination with high B decreased the sugar contents in whole leaf compared to control or high B. Overall, higher concentrations of sugars were observed in symplast compared to apoplast indicating the symplast as major compartment for sugar transport. Furthermore, wheat plants accumulate sugars in subcellular compartments to maintain their growth under stress conditions.  相似文献   
60.
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号